Microbial population dynamics associated with crude-oil biodegradation in diverse soils.

نویسندگان

  • Natsuko Hamamura
  • Sarah H Olson
  • David M Ward
  • William P Inskeep
چکیده

Soil bacterial population dynamics were examined in several crude-oil-contaminated soils to identify those organisms associated with alkane degradation and to assess patterns in microbial response across disparate soils. Seven soil types obtained from six geographically distinct areas of the United States (Arizona, Oregon, Indiana, Virginia, Oklahoma, and Montana) were used in controlled contamination experiments containing 2% (wt/wt) crude oil spiked with [1-(14)C]hexadecane. Microbial populations present during hydrocarbon degradation were analyzed using both 16S rRNA gene sequence analysis and by traditional methods for cultivating hydrocarbon-oxidizing bacteria. After a 50-day incubation, all seven soils showed comparable hydrocarbon depletion, where >80% of added crude oil was depleted and approximately 40 to 70% of added [(14)C]hexadecane was converted to (14)CO(2). However, the initial rates of hydrocarbon depletion differed up to 10-fold, and preferential utilization of shorter-chain-length n-alkanes relative to longer-chain-length n-alkanes was observed in some soils. Distinct microbial populations developed, concomitant with crude-oil depletion. Phylogenetically diverse bacterial populations were selected across different soils, many of which were identical to hydrocarbon-degrading isolates obtained from the same systems (e.g., Nocardioides albus, Collimonas sp., and Rhodococcus coprophilus). In several cases, soil type was shown to be an important determinant, defining specific microorganisms responding to hydrocarbon contamination. However, similar Rhodococcus erythropolis-like populations were observed in four of the seven soils and were the most common hydrocarbon-degrading organisms identified via cultivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of C/N Ratio on the Phytoremediation of Crude Oil Contaminated Soils by Puccinellia Distance

Petroleum contamination of soil is a serious problem throughout the oil producer countries. Vegetation may play an important role in the biodegradation of toxic organic chemicals in soil. For petroleum compounds, the presence of rhizosphere micro flora may accelerate biodegradation of the contaminants. In a greenhouse study, petroleum contaminated soil were treated using phytoremediation . ...

متن کامل

Environmental Drivers of Differences in Microbial Community Structure in Crude Oil Reservoirs across a Methanogenic Gradient

Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was signif...

متن کامل

Enhanced Bioremediation of Brass Crude-Oil (Hydrocarbon), Using Cow Dung and Implication on Microbial Population

The present study has used soil samples from Nigeria, contaminated with Brass crude-oil, to determine its biodegradation through enhanced biostimulation with cow dung and periodic aeration. Over a period of twenty-eight days, the hydrocarbon-utilizing bacteria (HUB) and hydrocarbon-utilizing fungi (HUF) have been counted and identified. Results from biodegradation of the brass crude-oil over th...

متن کامل

Biodegradation of crude oil by immobilized microbial cells in alginate beads produced by electrospraying technique

Background and Objective: Petroleum compounds are major contributors to aquatic environmental pollution. In recent years, biological treatments as environmental-friendly and cost-effective techniques have been used alongside the various physico-chemical methods. Microbial cell immobilization in hydrogel carriers has been the focus of researchers due to various advantages such as ease of microbi...

متن کامل

Time Course-Dependent Methanogenic Crude Oil Biodegradation: Dynamics of Fumarate Addition Metabolites, Biodegradative Genes, and Microbial Community Composition

Biodegradation of crude oil in subsurface petroleum reservoirs has adversely impacted most of the world's oil, converting this resource to heavier forms that are of lower quality and more challenging to recover. Oil degradation in deep reservoir environments has been attributed to methanogenesis over geological time, yet our understanding of the processes and organisms mediating oil transformat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 72 9  شماره 

صفحات  -

تاریخ انتشار 2006